
50272 - iOl IE'C)-1 /

REPORT DOCUMENTATION I. "1POt NO. . 3. Recipi,rs Afese,,, No.

PAGE DCA/SW/MT-88/00 0lq
4. Title and Subtitle Defense Communications Agency L Report Dote

Upper Level Protocol Test System L May 1988

Transmission Control Protocol Remote Driver Specificition
7. Author(s) L- Performing Organization Ret. No.

9. Performing Organization Name and Address 10. Pruect/Task/Woirk Unit No.

Defense Communications Agency
Defense Communications Engineering Center 11. Contrct(C) or Grant(G) No.

Code R640 (C)
1860 Wiehle Ave.
Reston, VA 22090-5500 __

12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered

FINAL

14.

.15. Supplementary Notes

For magnetic tape, see: ADA 19 5 128
Ln Abstract (Limit: 200 words)

___ This document is part of a software package that provides the capability
.b to conformance test the Department of Defense suite of upper level

protocols including: Internet Protocol (IP) Mil-Std 1777, Transmission
_,I. - Control Protocol (TCP) Mil-Std 1778, File Transfer Protocol (FTP)

._ Mil-Std 1780, Simple Mail Transfer Protocol (SMTP) Mil-Std 1781 and
TOM TELNET Protocol Mil-Std 1782.

I DSTi~~yN SATME AELECTE

Approved for public relcasel

' r+, :. :+.+ .. ; . D..istribu uon U 1z~ i

* 17. Document Analysis a. Descriptors

Protocol Test Systems
Conformance Testing

5. Department of Defense Protocol Suite

b. Idintlflers/OpenEnded Terms

* Internet Protocol (IP) TELNET Protocol
Transmission Control Protocol (TCP)
File Transfer Protocol (FTP)
Simple Mail Transfer Protocol CSMTP)
c. COSATI Fleld/Group

I& Availability Statement 19. Securift Class (This Redo) 11. No. of PagestUNICLASSTIFT FD 57
Unlimited Release 20 Security Class (This Page) 22. Price

UNCLASSIFIED
(Se ANSI-Z39. 8) See Instructions on Reverse OPTIONAL FORM 272 (4-77)

(Formerly NTIS-35)7o0 ?6 Department of Commerce

DEFENSE COMMUNICATIONS AGENCY

UPPER LEVEL PROTOCOL TEST SYSTEM

TRANSMISSION CONTROL PROTOCOL MIL-STO 1778
'S' REMOTE DRIVER SPECIFICATION

404 COPY

MAY 1988 -

Disclaimer Concerning Warranty and Liability

This software product and documentation and all future updates to it
are provided by the United States Government and the Defense
Communications Agency (DCA) for the intended purpose of conducting
conformance tests for the DoD suite of higher level protocols. DCA has
performed a review and analysis of the product along with tests aimed
at insuring the quality of the product, but does not warranty or make
any claim as to the quality of this product. The product is provided
"as is" without warranty of any kind, either expressed or implied. The
user and any potential third parties accept the entire risk for the
use, selection, quality, results, and performance of the product and
updates. Should the product or updates prove to be defective,
inadequate to perform the required tasks, or misrepresented, the
resultant damage and any liability or expenses incurred as a result
thereof must be borne by the user and/or any third parties involved,
but not by the United States Government, including the Department of
Commerce and/or The Defense Communications Agency and/or any of their
employees or contractors.

Distribution and Copyright

This software package and documentation is subject to a copyright.
This software package and documentation is released to the Public

Domain.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage.

Comments

Comments or questions about this software product and documentation can
be addressed in writing to: DCA Code R640

1860 Wiehle Ave
Reston, VA 22090-5500
ATTN: Protocol Test System Administrator

0 MA

*

TABLE OF CONTENTS

Section Page

List of Appendices iv

List of Figures v

List of Tables vi

1 SCOPE AND PURPOSE 1-1

2 THE PROTOCOL TEST SYSTEM 2-1

3 REMOTE DRIVER FUNCTIONS 3-]

* 3.1 THE COMMAND CHANNEL 3-1

3.2 FLOW OF COMMANDS 3-2

3.3 COMMAND CHANNEL COMMUNICATION 3-5

3.3.1 Packet Control Flag Field 3-7

3.3.2 Packet Error Flag Field 3-9

3.3.3 Packet Primitive Code Field 3-9

3.3.4 Packet Num bytes Field 3-9

3.3.5 Packet Reserved Field 3-10

3.3.6 Packet Text Field 3-10

4 INTERPRETATION OF THE PRIMITIVE CODES 4-1

4.1 PROTOCOL PRIMITIVE CODES 4-1

4.1.1 ACTOPEN 4-8S

4.1.2 SPECPSV 4-8

4.1.3 PSV OPEN 4-8

4.1.4 ACT WDATA. 4-8

4.1.5 SEND 4-8

%! 4.1.6 ALLOC 4-9

4.1.7 CLOSE 4-9

4.1.8 ABORT 4-9

4.1.9 STATUS 4-9

01

I ii

TABLE OF CONTENTS (Cont'd.)

Section Page

4.2 REMOTE DRIVER MODES 4-10

4.2.1 IMPLICIT MODE 4-10

4.2.2 EXPLICIT MODE 4-10

4.3 DRIVER PRIMITIVE CODES 4-10

4.3.1 KILL 4-11

4.3.2 GENSNDTXT 4-12

4.3.3 EXPLICIT 4-12
4.3.4 ENDEXPLICIT 4-12

4.3.5 NOOP 4-12

5 REMOTE DRIVER RESPONSES 5-1

5.1 PACKET HEADER 5-1

5.1.1 Control Flag 5-1

5.1.1.1 ... Type of Packet Designation 5-1

5.1.1.2 Channel Designation 5-1

5.1.2 Num_bytes Field 5-3

5.2 TEXT PORTION--PROTOCOL RESPONSES 5-3

5.2.1 OPEN ID Response 5-6

5.2.2 OPEN FAILURE Response 5-6

5.2.3 OPEN SUCCESS Response 5-6

5.2.4 DELIVER Response 5-7

5.2.5 CLOSING Response 5-7

5.2.6 TERMINATE Response 5-7

5.2.7 STATUS Response 5-10

5.2.8 TCP ERROR Response 5-10

5.3 TEXT PORTION--DRIVER RESPONSES 5-11

5.3.1 SYSTEM ERROR RESPONSE 5-12

* iii

~TABLE OF CONTENTS (Cont'd.)

Section Page

6 TIMING.. 6-1

. 7 FLEXIBILITY................................... 7-1

.34

SNgD

.3"

0)

S iv

LIST OF APPENDICES

APPENDIX A - References................................. A-I

APPENDIX B - Glossary................................... B-I

APPENDIX C - Examples of Remote Driver lmpipmentation
in UNIX/C.................................. C-i

APPENDIX D - Example Command Channel Packet Exchange. D-1

LW_-

LIST OF FIGURES

Figure Page

2-1 Flow of Commands Between the Drivers 2-2

3.1-1 Connection Establishment 3-3

3.2-1 Remote Driver Functions 3-4

3.3-1 Structure of the Packets on the Command
Channel 3-6

3.3.1-1 The Bit Order of a Byte 3-7

5-1 Example Command Channel Packet -- Remote
Driver to Central Driver 5-2

5.2-1 Remote Driver Service State Machine 5-5

C.1-1 Outline of Command Channel Establishment
in 4.2 BSD UNIX/C C-2

C.2-1 The C Syntax Format of the Data Packet C-3

C.2-2 A Packet Assembler/Disassembler in C C-6

I'

.

* vi

LIST OF TABLES

Table Page

3.3.1-1 Bit Positions in the Control Flag 3-8

4.1-1 Protocol Primitive Commands, Number Codes,
and Arguments 4-3

4.1-2 Internal Representation of ASCII

Arguments 4-5

4.3-1 The Driver Primitives 4-11

5.2.6-1 Meanings of Terminate Description Strings.. 5-9

., ,

S" ,,
: 'p.
4'

o4..

'q

"S-

_5 .

SECTION I - SCOPE AND PURPOSE

This specification describes the Transmission Control

Protocol (TCP) Remote Driver for the Protocol Tcst System.

Section 2, 'The Protocol Test System," summarizes the_

testing procedures used by the system. Section 3, "Remote

Driver Functions,' contains guidelines for developing a TCP

Remote Driver where an implementation under test (IUT)

resides. In Section 4 a detailed description is given of

the commands the Remote Driver must be able to interpret and

carry out to perform the TCP testing. Section 5 specifies

the response packets the Remote Driver must send to the

Central Driver. In Section 6 Remote Driver timing

0 considerations are discussed. Section 7 describes

flexibility requirements.

.I

a'
b

* 2-1

SECTION 2 - THE PROTOCOL TEST SYSTEM

The Protocol Test System (PTS) exercises an IUT

performing peer protocol exchanges with a reference

implementation at the Protocol Test System site. A driver

controls each peer protocol through its upper level

interface. To generate reproducible results, a script

controls each driver.
N

Figure 2-1 illustrates the major components of the

Protocol Test System:

o Central Driver (CD) -- To coordinate and monitor
protocol testing;

o Remote Driver (RD) -- To exercise the TCP IUT and
provide communication links with the Central
Driver; and

.." .

o Laboratory Slave Driver (LSD) -- To exercise the
TCP Reference implementation, record TCP segments

-." exchanged over the test connections, and provide
communication links with the Central Driver.

The Central Driver, which coordinates and monitors

protocol testing, combines the input it receives from the

Laboratory Slave Driver and the Remote Driver to determine

the success or failure of each test.

* The Remote Driver receives protocol commands from the

Central Driver, issues TCP commands to the IUT, and sends

back protocol responses from the IUT to the Central Driver.

It also executes driver commands received from the Central

Driver. Driver commands control the Remote Driver itself

and do not affect the IUT's state. Protocol commands thatF. the Remote Driver passes to the 1UT as TCP commands, have

appropriate parameters and directly affect the IUT's state.

S"LU'i
<fC

a7

* 2-2

?iQure 2-1. Flow of . Between the Dri.es

Z-'.

Central Driver

* command channel - command channel

Laboratory IRemote Driver
Slave Driver

-a-'- -TCP

TCPReference 4 Implementation
Implementation test Under Test

c t207C

-a

Se

0-' r -"..'? .. " ' ''''.... -.- '[-.....% ", ', , " ' ,- . . . _ -. -. -, . . ." " " " "-t

r -o%- ~

3-1

SECTION 3 - REMOTE DRIVER FUNCTIONS

The following sections describe how the Remote Driver

4' and Central Driver communicate protocol commands and

responses in testing.

3.1 THE COMMAND CHANNEL

All drivers except the Remote Driver reside at the

Protocol Test System testing facility. The Remote Driver
Aoperates using a transport-level protocol connection as a

command channel. The connection links the Remote Driver at

* its remote site with the Central Driver. This approach to

" testing assumes the TCP IUT mechanism to be capable of

error-free, basic communication. The tester should then be

able to rely on the command channel for the simple

request/response function required to perform the tests. If

not, the first phase of TCP testing will discover the

inadequacy, and the implementation will be rejected without

further testing.

To set up the command channel, the TCP Remote Driver

issues a passive open on port 2001, using default values of

the other parameters of passive open (Table 4.1-2). The

Remote Driver then waits for the Central Driver to perform

an active open to that port. Figure 3.1-1 is a diagram of

connection establishment. The Remote Driver must function

as a server and listen for further connection requests from

*the Central Driver on port 2001 after the command channel

has been established. Appendix C includes an example of

command channel establishment implemented in UNIXiC.

0 3-2

3.2 FLOW OF COMMANDS

Packets containing command codes travel over the

command channel from the Central Driver to the Remote

Driver. The Remote Driver translates these codes into the

appropriate commands, then issues the commands. Similarly,

responses from the IUT protocol are received by the Remote

Driver and forwarded over the command channel to the Central

Driver (Figure 3.2-1). The Central Driver determines from

the test responses whether the IUT has functioned as

expected and reacts accordingly--by taking the next

appropriate action in the testing process--and the flow of

commands is repeated.

S.'

Ik

%

4,

3-3

Figure 3.1-1. Connection EstaL~iishment

Central
Driver

TCP Transport
Connection

_(pre-tested)

{ DDN}

Dverified capable

V TCP of =Lkor-rrz=,

IUT basic communication

}User/TCP interface--

Remote see text for
description of Remote

Driver Driver functions

}User/TCP interface
* TCP --test connections

IUT

)TCP/lower-level
* interface

V,.

3-4

Figure 3.2-1. Remote Driver Functions

TCP SERVICE REQUESTS CENTRAL DRIVER COMMANDS

IUT RMT ETA

*C TCP SERVICE RESPONSES DIE RNLTDTPSRIERSOSS DIE

12"

% %.

0 3-5

3.3 COMMAND CHANNEL COMMUNICATION

The Remote Driver must be able to receive packets from

the Central Driver, translate number codes into commands,

and interpret ASCII text strings of parameters. It also

must be able to send one of three packets: an ACK

(Acknowledgment), a NAK (Negative Acknowledgment), or a

Data packet containing either protocol responses or driver

command results. The Remote Driver is required to

acknowledge the receipt of every driver or protocol command

(ACK = positive acknowledgment; NAK = negative

acknowledgment). When it is able to interpret a packet from

the Central Driver, the Remote Driver sends an ACK packet.

If it is unable to parse the packet command parameter list,

the Remote Driver should send a NAK packet. A NAK is an

indication of a Remote Driver problem and should be sent

only during Remote Driver shakedown, never during the

running of the TCP tests. In other error conditions,

the Remote Driver sends one of the responses defined in
Section 5, rather than a NAK packet.

All codes are explained in detail in the following sections.

Figure 3.3-1 shows the structure of the packets on the

command channel; Figure C.2-1 in Appendix C defines a packet

in C syntax. The packet and each of its fields are ordered

in Internet Protocol (IP) byte order.

3-6

Figure 3.3-1. Structure of the Packets on the
Command Channel

Remote-to-Laboratory Packet and Laboratory-to- Remote Packet

1 byte 1 byte *4 byteslo

control error protocol/driver primitive codes
flags flags high-order low-order

_______ ____ I_ byte byte

number bytes Of text Reserved for
Protocol-Dependent

high-order low-order Functions

byte byte (Not used for TCP)

-/Reserved for TEXT
Protocol-Dependent
Functions
(Not used for TCP) 0-4096 bytes

TEXT (cont'd.)

m~s 1207

IMM

3-7

3.3.1 Packet Control Flag Field

A single byte contains the control flag. (See Figure

3.3-1.) The bit positions are in ascending order from right

to left. Figure 3.3.1-1 diagrams the bit-ordering scheme.

Figure 3.3.1-1. The Bit Order of a Byte

Control Flag:

-------------- byte-----------

most I I I I I I I I I least
significant 7 6 5 4 3 2 1 01 significant

bit 1 I 1 I bit

I I bit positions II _ _ _I _ _ _ I

Table 3.3.1-1 summarizes the configuration of bit

positions in the control flag. The three least significant

bits are indicators that define how the driver is to

interpret the packet. In the Remote Driver to Central

Driver dialog, the Remote Driver sets the bit in position

zero (0) to one (1) to indicate that an ACK packet is being

sent. A zero (0) in this position indicates a NAK. If the

Remote Driver sets the bit in position 1, then a data packet

(as opposed to an ACK/NAK packet) is being sent. Setting

the DATA bit in a packet could signal either that the Remote

Driver is sending a protocol response, or that it is sending
0

the results of one of its own driver operations. In

the Central Driver to Remote Driver dialog, the bit in
position 2 of the first byte of each packet sent by the

Central Driver determines whether the packet contains a

protocol or a driver command.

3-8

Table 3.3.1-1. Bit Positions in the Control Flag

a. Remote Driver -- :, Central Driver

Bit Position I ACK/NAK Packet Data Packet

0 ACK = 1 0 (unused)
NAK = 0

1 0 (unused) data = 1

2 0 (unused) 0 (unused)

3-7 0 (unused) I channel numberi

b. Central Driver --> Remote Driver

Bit Position I Command Packet

0 0 (unused)

1 0 (unused)

2 protocol command = 1
driver command = 0

3-7 channel number

z -

3-9

Bits 3 through 7 form a test system channel number in

the range 0 to 31. The channel number enables the Central

Driver to sort Remote Driver data packets containing

protocol responses before the Central Driver has interpreted

the text of the packet. One channel number may be

associated with more than one TCP test connection. Section

5.1.1.2 details the association between the channel number

and TCP test connections.

3.3.2 Packet Error Code Field

This one-byte field is currently unused.

3.3.3 Packet Primitive Code Field

The 4-byte primitive code field specifies to the

Remote Driver what action the Central Driver wants

performed. This action can be one that exercises the TCP (a

protocol primitive action) or one that changes the test

environment or affects the driver itself (a driver primitive

action). The interpretation is determined by the value of

the second bit in the control flag field, as discussed in

Paragraph 3.3.1. The driver must translate the integer in

the primitive code to its corresponding protocol or driver

primitive according to the descriptions and the code numbers

in Tables 4.1-1 and 4.3-1. Section 4 gives a a detailed

description of the primitive codes and their meanings.

Ci 3.3.4 Packet Num bytes Field

The next 4 bytes in the packet specify the number of

bytes in the packet's text portion. This field can have a

value of 0 to 4096, but the value must be 0 for an ACK or
4d, NAK packet. The Remote Driver must always specify the

number of bytes in the text portion of a data packet.

AearJI j AAA

4 3-10

3.3.5 Packet Reserved Field

The next 4 bytes in the packet are reserved. They are

currently unused.

3.3.6 Packet Text Field

This field contains ASCII text. Its length is

specified in the numbytes field.

NN

Al

* 4-1

SECTION 4 - INTERPRETATION OF THE PRIMITIVE CODES

qThe primitive code field can be interpreted in two
'ways--either as a protocol primitive code or as a driver

primitive code. A primitive in this sense means a command

that describes some action within the protocol or the

driver. The interpretation is determined by the value of

the second bit in the control flag field, as discussed in

section 3.3.1.

4.1 PROTOCOL PRIMITIVE CODES

If the control flag indicates a protocol command

(i.e., the bit in position 2 is set to 1), then the Remote

Driver must translate the integer in the primitive code

field to its corresponding protocol primitive (Table 4.1-1).

Because every operating system has different facilities, the

form of commands given to the protocol IUT by the Remote

Driver depends on the IUT's User Interface. The Remote

Driver is required to include this translation capability in

its function.

The Remote Driver can determine whether the required

arguments are present by reading the packet numbytes field,

which tells how many bytes of ASCII character data are in

the text field. If the numbytes field contains a zero,

then the Remote Driver assumes no arguments have been

supplied. However, if the num bytes field contains any

positive integer from I to 4096, the Remote Driver must read

the contents of the text field and interpret these contents

as the primitive's arguments.

0 Arguments are located in the text field of the command

packet--beginning at offset zero--and are separated by ASCII

& %

~~~~~~. LN~. ':~; 4



* 4-2

spaces. The supplied arguments must be interpreted as

position-dependent tokens. The data type each token

represents is given in Table 4.1-2, "Internal Representation

or ASCII Arguments." For example, if the Remote Driver

receives a packet containing the protocol command ACT OPEN--

which requires the parameters SOURCE PORT, DESTINATIONPORT,

DESTINATIONADDR, PRECEDENCE, SECURITYLEN,

CLASSIFICATIONLEVEL, PROTECTIONAUTHORITY, ULP TIMEOUT, and

ULPTIMEOUTACTION--then the text field might contain the

following:

5000 2000 7.0.0.2 0 0 0 0 5 0

where the ASCII data, separated by spaces, correspond to the

argument tokens. The tokens SOURCEPORT and DESTPORT are

5000 and 2000, respectively. The DESTINATION ADDR is of

type Internet Address Format (A.B.C.D), so the data for

this token are 7.0.0.2. The next four tokens have no

corresponding data, but they must have place holders (zeros,

separated by spaces) to indicate the absence of data or the

false condition of a flag. The fifth argument, ULPTIMEOUT,

is 5, indicating number of seconds (according to Table 4.1-

2). The final argument is zero. In this case, as the table

shows, a zero represents a certain timeout action, not

absence of data.

Table 4.1-1 lists the primitive commands and their

respective number codes and argument fields. Table 4.1-2

gives the TCP data types for each protocol argument,

accompanied by brief descriptions where needed.

[IN
0



* 4-3

Table 4.1-1. Protocol Primitive Commands, Number Codes,
and Arguments

[Section
" Primitive for

(No.Code) Argument(s) Referencei

ACT OPEN (A) SOURCE PORT, DESTINATION PORT, 4.1.1
DESTINATIONADDR, PRECEDENCE,
SECURITYLEN, CLASSIFICATION LEVEL,
PROTECTION AUTHORITY, ULPTIMEOUT,
ULPTIMEOUTACTION

SPECPSV (2) SOURCE PORT, DESTINATION PORT, 4.1.2
DESTINATION ADDR, PRECEDENCE,

* SECURITY LEN, CLASSIFICATION LEVEL,
PROTECTION AUTHORITY, ULP TIMEOUT,
ULP TIMEOUT ACTION

PSVOPEN (3) SOURCE PORT, PRECEDENCE, 4.1.3
SECURITYLEN, CLASSIFICATION LEVEL,
PROTECTION AUTHORITY, ULPTIMFOUT,
ULPTIMEOUTACTION

ACT WDATA (4) SOURCE PORT, DESTINATION PORT, 4.1.4
DESTINATION ADDR, PRECEDENCE,
SECURITYLEN, CLASSIFICATION_ LEVEL,
PROTECTION AUTHORITY PUSH FLAG,
URGENT FLAG, ULP TIMEOUT,
ULPTIMEOUTACTION

SEND (5) LCN, PUSH FlAC, URGEN'F FLAG, 4.1.5
ULP TIMEOUT, ULP TIMEOUT ACTION

Note: The arguments DATA and IATA LEN are not used in the
ACT WDATA and SEND protocol commands because the driver command

* GEN SND _TEXT (paragraph 4.3.2) always precedes these protocol
commands.

0i
A.



kr VV lr' AW'n XW~~ W -JF-W W'FJ

* 4-4

(Table 4.1-1., cont'd.)

Section
Primitive [For
(No.Code) Arguments) Referencel

ALLOC (6) LCN, DATALEN 4.1.6

CLOSE (7) LCN 4.1.7

,"

.,

ABORT (8) LCN 4.1.8

*STATUS (9) LCN 4.1.9

-

..

. "

5% . . .t ., ...... : :...: : ~ .,. ,.. .v .. , , • . .....•. . . . ., .."- - - ,. .". " ' ,. . . . ."- .- -'. . ' " ' "- , - ,



* 4-5

Table 4.1-2. Definition of Command and Response Arguments

Argument Type I Values

SOURCEADDR Internet Address 0 - 255.

Format A.B.C.D for A,B,C and D.

SOURCE PORT INTEGER 0 - 65535

DESTINATION ADDR Internet Address 0 - 255.
Format A.B.C.D for A,B,C and D.

DESTINATIONPORT INTEGER 0 - 65335.

LCN INTEGER 0 - 65335.
(This restriction is
specific to the test
system.)

U±PTIMEOUT INTEGER (seconds) 0 - 255.

ULPTIMEOUTACTION INTEGER If ULP TIMEOUT > 0,
I for reset action,
0 for notify action.
If ULP TIMEOUT = 0,
0 for unused.

PRECEDENCE INTEGER 0 - 7.
If PRECEDENCE = 0,
use the IUT default
value.

SECURITY LEN INTEGER 0,4 or 5.
4 or 5 when
CLASSIFICATION TFVE,
and PROTECTION AUTHORITY
are not 0,
0 when IUT default value
is to be used. (This
argument is specific to
the test system. It
designates the length of
the option.)

0A X



* 4-6

(Table 4.1-2., cont'd.)

Argument Type Values

CLASSIFICATIONLEVEL INTEGER Valid security level or 0.
0 when IUT default value
is to be used.

PROTECTIONAUTHORITY INTEGER Valid security protection
authority or 0.
0 when IUT default value

is to be used.

PUSHFLAG INTEGER 0 or 1.
0 when push service is not
requested,
I when push service is
requested
Not used in responses.

URGENTFLAG INTEGER 0 or i.
0 when data are not
urgent,
I when data are urgent.

DATA ASCII ASCII data.

DATALEN INTEGER Length of ASCII data (in
bytes).

CONNECTIONSTATE ASCII One of the following
strings:
LISTEN, SYN_SENT,
SYNRECEIVED,

V. ESTABLISHED, FINWAITl,
FIN WAIT2, CLOSE WAIT,

. LAST ACK, CLOSING,

TIMEWAIT, or CLOSED.

SENDWINDOW INTEGER 0 - 65535.

RECEIVEWINDOW INTEGER 0 - 65535.

AMOUNTOFUNACKEDDATA INTEGER 0 - 65535.

AMOUNTOF UNRECEIVEDDATA INTEGER 0 - 65535.

h



4-7

(Table 4.1-2., cont'd.)

Argument Type Values

URGENTSTATE INTEGER 0 or 1.
0 when the ULP is not in
urgent mode,
I when the ULP is in
urgent mode.
(This simple version of
the STATUS URGENTSTATE
field is specific to the
test system.)

%

Ii
I.



4-8

4.1.1 ACT OPEN

Protocol command ACT OPEN tells the Remote Driver to

invoke the Active Open TCP service request primitive. This

command allows an Upper Level Protocol (ULP) to initiate a

connection attempt to a named ULP.

4.1.2 SPEC PSV

Protocol command SPEC PSV tells the Remote Driver to

invoke the Fully Specified Passive Open TCP service request

primitive. This command allows a ULP to listen for and

respond to connection attempts from a fully named ULP.

4.1.3 PSV OPEN

Protocol command PSV OPEN tells the Remote Driver to

invoke the Unspecified Passive Open TCP service request

primitive. This command allows a ULP to listen for and

respond to connection attempts from an unnamed ULP.

If, after a connection has been established on the

listening port, the Central Driver wishes the Remote Driver

to invoke another Unspecified Passive Open TCP service

request on the same port, another PSVOPEN protocol command

will be sent. Remote Driver implementors should be aware

that in UNIX-based systems This passive open service request

will have already been done automatically, and should

provide for handling this second request in their driver

implementations.

N



4-9

4.1.4 ACT WDATA

Protocol command ACTWDATA tells the Remote Driver to

invoke the Active Open With Data TCP service request

primitive. This command allows a ULP to initiate a

connection attempt to a named ULP accompanied by the

specified data. ACTWDATA is always preceded by the driver

command GENSNDTXT documented in section 4.3.2.

4.1.5 SEND

Protocol command SEND tells the Remote Driver to

* invoke the Send TCP service request primitive. This command

causes data to be transferred across the named connection.

SEND is always preceded by the driver command GEN SND TXT

documented in section 4.3.2.

4.1.6 ALLOC

Protocol command ALLOC tells the Remote Driver to

invoke the Allocate TCP service request primitive. This

command allows a ULP to issue TCP an incremental allocation

for receiving data. The parameter DATALEN is defined in

single-byte units. This quantity is the additional number

of bytes the receiving ULP is willing to accept.

NOTE: The ALLOC protocol command corresponds exactly to the

MIL-STD-1788 service request. The Remote Driver issues this

service request at its own convenience unless it is in the

Explicit mode (Section 4.2).

0%

%J.,



4-10

4. 1. 7 CLOSE

Protocol command CLOSE tells the Remote Driver to

invoke the Close TCP service request primitive. This

command allows a ULP to indicate that it has completed data

transfer across the named connection.

4.1.8 ABORT

Protocol command ABORT tells the Remote Driver to

invoke the Abort TCP service request primitive. This

command allows a ULP to indicate that the named connection

is to be immediately terminated.

4.1.9 STATUS

Protocol command STATUS tells the Remote Driver to

invoke the Status TCP service request primitive. This

command allows a ULP to query for the current status of the

named connection.

4.2 REMOTE DRIVER MODES

The Remote Driver is required to have two modes of

receiving data across its TCP test connections: the Implicit

and the Explicit modes. The Implicit mode is the default

mode.



4-I1

4.2.1 Implicit Mode

In the default, the Implicit mode, the Remote Driver

is responsible for making sure the TCP IUT can deliver data.

Depending on the specific test, varying amounts of data will

arrive on the test connections, and the Remote Driver must

be prepared for a maximum volume similar to that of file% .

transfer. In terms of the TCP specification, the Remote

Driver must issue suitable Allocate service requests. It

does not receive any Allocate protocol commands from the

Central Driver.

4.2.2 Explicit Mode

In the Explicit mode, the Remote Driver may not issue

Allocate service requests unless it receives the protocol

command from the Central Driver. The Remote Driver enters

this mode when it receives an EXPLICIT driver command and

leaves it when it receives an END-EXPLICIT driver command

(Section 4.3).

4.3 DRIVER PRIMITIVE CODES

If the control flag indicates a driver command (the

bit in position 2 is set to zero), the Remote Driver must

translate the integer contained in the code field to its

corresponding driver command (Table 4.3-1). The Remote

Driver then performs the appropriate action, as specified in

* the following sections.

0

kvb

0%-

or o r r - .



* 4-12
S.--

Table 4.3-1. The Driver Primitives

N'... i

Code Remote Driver Action I Section
Number (Arguments in parentheses;

I if none, then --- ))

C:.0 KILL (---) 4.3.1
Kill the Remote Driver process.

1 GENSNDTEXT (TEXTCHR, TEXTLEN) 4.3.2
Generate text to be used as the
data in a SEND or ACT WDATA

protocol command.

~5/ 2 EXPLICIT (---) 4.3.3

3 ENDEXPLICIT (---) 4.3.4

4 NOOP (---) 4.3.5
No operation.

4.3.1 KILL

If it interprets a driver primitive code of 0, the

Remote Driver ACKs the driver primitive packet. Then the

. .<. Remote Driver aborts all test connections, including the

S. 5command channel connection, and terminates itself.

0 4.3.2 GEN SND TEXT

If the Remote Privor ro-eives a driver primitive cnde

of 1, indicating the GEN SND TEXT command, then after ACKing

the driver primitive packet, the Remote Driver must generate

text specified by the arguments TEXT CHR (a single ASCII

character) and TEXT LEN (integer). The arguments should be

interpreted as tokens, as described in Section 4.1. A

0

%. N *. W



4-13

"Nl

single character (TEXTCHR) is generated the specified

number (TEXTLEN) of times, and is subsequently used in

,'. , either the next SEND or ACT WDATA protocol command. Either

one of these protocol commands always immediately fo] lows

the GENSNDTEXT driver command.

4.3.3 EXPLICIT

If the Remote Driver receives a driver primitive of 2,

it should enter the EXPLICIT mode. Thereafter, it may not

issue Allocate service requests unless it receives the

*. protocol command ALLOC from the Central Driver (Section

* 4.2.2).

.^%a 4.3.4 END EXPLICIT

On receipt of the driver primitive code 3, the

ENDEXPLICIT command, the Remote Driver returns to the
IMPLICIT mode. It may issue suitable Allocate service

4,

requests as needed (Section 4.2.1).

4.3.5 NOOP

If the Remote Driver --c--o ...iV. .p Live codue

of 4, indicating the NOOP command, the only action required

.of the Remote Driver is that it ACK the packet. The test

system uses the NOOP primrt t %,.c to verify communications

capability and to conduct Arc-You-There checks.

a,.

-ak



5-I

SECTION 5 - REMOTE DRIVER RESPONSES

The Remote Driver sends two types of packets to the

Central Driver: ACK,'NAK packets and Data packets. It must

acknowledge all command packets from the Central Driver with

an ACK or NAK packet and must send to the Central Driver all

protocol responses it receives from the TCP IUT. The

protocol responses are reported in data packets with the

packet header specifying the responding test channel and the

text portion indicating the response. Section 3 gives a

detailed description of the packet format. Figure 5-1 shows

an example of a Data packet from the Remote Driver to the

Central Driver. Appendix D contains an example sequence of

packet exchanges between a Remote Driver and a Central

Driver.

5.1 PACKET HEADER

5.1.1 Control Flag

5.1.1.1 Type of Packet Designation

For an ACK/NAK packet, the Remote Driver sets bit

position 0 in the Control Flag byte: I indicates an ACK; 0

specifies a NAK. Bit positions I and 2 are set to 0. In a

Data packet, bit position 0 is set to 0, bit position 1 is

set to I (indicating a Data packet), and bit position 2 is

set to 0.

* 5.1.1.2 Channel Designation

The Remote Driver must set the channel number in bits

3 through 7 in the control flag of all packets it sends to

the Central Driver. It sets the channel number to 0 on

*ACK/NAK packets. The Remote Driver must set the field for

0-



-5-2

Figure 5-1. Example Command Channel Packet --

Remote Driver to Central Driver

CONTROL ERROR PRIMCODE I

FLAGS FLAGS

00010010 0 0 0 0 0 0 0 0 0 0

- NUMBER OF BYTES OF TEXT RESERVED

0 00 00 00 14 0 0 0 0

'(RESERVED) TEXT

0 0 00 0 P E N

* I

2 0 0

E N D

EXPLANATION

CONTROL FLAGS: DATA PACKET
CHANNEL 2

NUMBER OF BYTES OF TEXT: 14 hexadecimal (20 bytes)

* TEXT: Open ID response to a PSV OPEN protocol command.
Destination port and address not known, so two blanks are
substituted. LCN is 5. Source port is 2010. The ASCII

-  "END" is the end of message delimiter.

- This symbol is the ASCII equivalent of the space character.

@

0

_ -p * . . L W MW-.W-tma.- , t.t A "* . .- . .'_. .-- .-.. .. -.. ,,, ,



5-3

m%
m

Data packets to the channel number associated with the

connection that received the reported response. Normally,

one channel number is associated with each TCP test

connection (each LCN) One channel number is associated

with more than one LCN during tests of IUT maintenance of

more than 32 connections. The channel number on the

protocol command packet that causes the Remote Driver to

issue an open command (ACTOPEN, SPECPSV, PSVOPEN) is

associated with the TCP test connection!LCN that results for

the lifetime of the connection.

The Remote Driver must also set a channel number in

* Data packets containing protocol responses that do not refer

to a TCP test connection. These are the Open Failure and

TCP Error responses (the latter only in some cases) and also

the System Error driver response. In these cases, the

Remote Driver uses the channel number from the command

packet containing the protocol command that produced the

response.

5.1.2 Num bytes Field

The num bytes header field must contain the number of

bytes in the text portion of the packet. This field is

* always set to 0 for an ACK/NAK packet. A response Data

packet will always have a text portion, and this field must

be set to the length of the text.

5.2 TEXT PORTION--PROTOCOL RESPONSES

The text portion of the response Data packet must

contain the responses from the [UT TCP or driver responses

(5.3). MIL-STD-1778 defines the service response primitives

10--.NIM %.



'I 5 - WK

that TCP provides through its service response interface.

The Remote Driver must convert whatever form of the

-, primitives it receives from its TCP into Remote Driver

protocol responses made up of the ASCII strings specified in

the following sections. A guide to this conversion is given

in the Remote Driver Service State Machine (Figure 5.2-1).

The convention applied to the descriptions of Remote Driver

protocol responses is:

o All ASCII characters or symbols appearing outside angle
brackets ("->") must appear in the string to be sent;

o All strings placed inside angle brackets are tokens to be
replaced by an ASCII representation of the actual value or

* the default (the TCP data types of these arguments are shown
in Table 4.1-2);

o One ASCII space must occur between each token; and

o Line breaks are shown only for clarity--they should be
ignored.

V%.'

V"

o

J-"

,, ,S ' .' .. ,. ' ' . ' .r -,- .. , " .. - . ' .. - ,.,. - ' -. - -. - . - ..-. - - . - . . ., , .. . . . . .- ,



Figure 5.2-1. Remote Driver Service State Machine

ridsoec 'sm

OPENN FAIURE "OE HadhaeFal

ACIEPASSIVE 0, (All Causes)

Handshake Completes N - Handshake Completes

OPEN SUCCESS" "OPEN SUCCESS"

ESTBLIHE

Peer ClosesCLS

'CLOSING"-

- - ITerminate: RA
IOther Causes

Waiting for I emnt:~Waiting for
U LLP Close ITerminate: UIT Pe' ls

N I Terminate: SF
NTerminate: NF -- 1 00

CLOSE -'Peer Closes

Temnae-C Terminate: CC

CLOSED

Tcp servce _________ Additional Transitions

te State: ALL STATES ACTIVE or PASSIVE STATEPtolEetEvent: ABORT CLOSE
abb~at u reviated dripsat Action: Terminate: UA Terminate; CC

strng. Ss. Tabie 5 2,6-1 Next State: CLOSED CLOSED
for complete String.

% %'**~ \ % .*-'i*. .N N N ~
%*~~?J**~- ~ L&



* 5-6

5.2.1 The Open Id Response

The Remote Driver sends this protocol response to the

Central Driver when it receives an Open Id service response

from its TCP. An Open Id protocol response indicates the

local connection name assigned by TCP to the connection

requested in one of the previous service requests--

N Unspecified Open, Fully Specified Open, or Active Open.

OPEN ID <LCN> <SOURCE PORT>

<DESTINATIONPORT> (if known)

<DESTINATIONADDR> (if known) END

* (Supply I space for unknown arguments)

5.2.2 The Open Failure Response

The Remote Driver sends this protocol response to the

Central Driver when it receives an Open Failure service

response from its TCP. This protocol response indicates the

failure of an Active Open service request.

OPEN FAILURE <LCN> END

A5.2.3 The Open Success Response

The Remote Driver sends this protocol response to the

Central Driver when it receives an Open Success service

response from its TCP. The Open Success protocol response

indicates the successful completion of one of the Open

service requests.

-N OPEN SUCCESS <LCN, END

0lz



* 5-7

5.2.4 The Deliver Response

The Remote Driver sends this protocol response to the

Central Driver when it receives a Deliver service response

from its TCP. The Deliver protocol response indicates the

arrival of data across the named connection.

DELIVER <LCN> 'DATALEN> ' DATA'

URG= URGENTFLAG. END

Note: No spaces exist on either side of the equal sign

5.2.5 Closing Response

The Remote Driver sends this protocol response to the

Central Driver when it receives a Closing service response

from its TCP. The Closing protocol response indicates that

the peer ULP has issued a CLOSE service request and that TCP

has delivered all data sent by the remote ULP. This

response is issued only if the local ULP has not yet sent a

Close. (See Figure 5.2-1.)

CLOSING <LCN> END

5.2.6 Terminate Response

The Remote Driver sends this protocol response to the

0 Central Driver when it receives a Terminate service response

from its TCP. The Terminate protocol response indicates

that the named connection has been terminated and no longer

%

0

.. W.



0 5-8

exists. TCP generates this response as a result of a remote

connection reset, service failure, or connection closing by

the local ULP.

TERMINATE <LCN> : -DESCRIPTION> END

*' where the colon (":") has one space on either side and

",DESCRIPTION>" is one of the following required description

strings:

REMOTE ABORT

NETWORK FAILURE

* SEC7 'PREC MISMATCH

ULP TIMEOUT

ULP ABORT or USER ABORT*

ULP CLOSE or CONNECTION CLOSED*

SERVICE FAILURE

* MIL-STD-1778 allows either (sections 6.5.6.1 and

9.4.6.3.34).

Table 5.2.6-1 provides an explanation of these

description strings.

-. &



5-9

Table 5.2.6-1. Meanings of Terminate Description Strings

Description String Meaning

REMOTE ABORT Remote abort.

NETWORK FAILURE Network failure.

SEC/PREC MISMATCH Received segment has unmatched
security or precedence.

ULP TIMEOUT Expiration of a ULP timeout when
timeout action is reset.

ULP ABORT or
USER ABORT Abort issued by local ULP.

V IULP CLOSE or Close issued by the local ULP
CONNECTION CLOSED after the remote TCP has closed

or
Arrival of remote TCP's close
after the local ULP has issued a
close.

SERVICE FAILURE Abort by the local TCP for other
reasons (service failure).

.

A.

S"

:% '



* 5-10

5.2.7 Status Response

A.- The Remote Driver sends this protocol response to the

Central Driver when it receives a Status service response

from its TCP. The Status protocol response indicates the

tA current status information associated with a connection

named in a previous Status service request.

STATUS -LCN: SOURCE PORT,

< SOURCE ADDR. -.DESTINATIONPORT>

, DESTINATIONADDR>

"CONNECTIONSTATE' > <SENDWINDOW>
* <RECEIVEWINDOW>

.AMOUNTOFUNACKEDDATA>

<AMOUNT OF UNRECEIVED DATA>

<URGENTSTATE> <'PRECEDENCE>

<CLASSIFICATION LEVEL>

<'PROTECTIONAUTHORITY>

<ULP_TIMEOUT> <ULP_TIMEOUTACTION>

END

5.2.8 TCP Error Response

The Remote Driver sends this protocol response to the

Central Driver when it receives an Error service response

from its TCP. The TCP Error response indicates illegal

service requests relating to the named connection or errors

relating to the environment.

0
TCP ERROR I.CN . ERROR DESCRIPTION;, END

W

S-S.

,0

S. ' - I'' ' ' ""
- "% ' ' '°'"" " %'' '"%" ' -' "%""" - "% = .' "m .. - , - -



* 5-11

(If the LCN argument is not known, supply 1 space.)

The colon (":") has a space on either side, and "-ERROR

DESCRIPTION>" is one of the following required description

strings:

INSUFFICIENT RESOURCES

SECiPREC NOT ALLOWED

CONNECTION DOES NOT EXIST

ILLEGAL REQUEST

CONNECTION ALREADY EXISTS

CONNECTION CLOSING

ULP TIMEOUT

NO MESSAGE

Note: The ASCII-formatted protocol responses described above

correspond to primitives required by MIL-STD-1778. Section

6.4.10 in MIL-STD-1778 describes these responses, and sections

A6.5.6.1 and 9.4.6 give a full specification of TCP events and

actions requiring these responses.

5.3 TEXT PORTION--DRIVER RESPONSES

The text portion of the response Data packet may contain a

driver response. The Remote Driver sends a driver response to

indicate an error that affects the performance of a TCP

command, but that is not one of the error or failure conditions

defined by the TCP specification.

.1%

S; ' * . . . , '_- '. _ ." . ''".<.""" - -".-" ".-" .," ' .['~ . " ;,','.."44



5-12

5.3.1 The System Error Response

The Remote Driver sends this response to inform the Central

Driver of system-dependent problems affecting the performance

of a TCP command:

SYSTEM ERROR : DESCRIPTION, END

Where the colon (":") has one space on either side and

"<DESCRIPTION>" is one of the following description strings:

REQUESTED SOURCE PORT NOT PERMITTED

REQUESTED SOURCE PORT IN USE

REQUESTED SERVICE NOT IMPLEMENTED

REQUESTED PARAMETER NOT IMPLEMENTED

,%%

I



* 6-1

SECTION 6 - TIMING

'The Remote Driver should be started up before testing

begins. All tests of TCP require the maintenance of at

least two TCP connections: the command channel f-omito the2-N

Central Driver and one or more test connections. Because

w " the next command from the Central Driver may depend on the

timely arrival of a Remote Driver protocol response, the

Remote Driver must not be blocked from receiving commands

from the Central Driver in preference to data and service

responses from the test connections.

* It is recommended that the Remote Driver check

frequently for data. The amount to receive at each check of

a test connection depends on the constraints of the

operating system, but the goal is to handle a maximum volume

simila: to that of file transfer. Apart from these points,

a Remote Driver has no intrinsic timing constraints, but it

should not add considerably to a protocol IUT's response

time.

N<'-

1.A -

Nr

,,-

i;<-



S I-I

~Although drivers have no special flexibility

L requirements, adaptable hardware and software enhance their

operation and expandabilitv. In the next phase of protocol

testing, drivers may need to be capable of commanding

,' "passive recorders or other devices.

...

,-.-..

'.9



aA-I

APPENDIX A - References

"Nilitary Standard Transmission Control Protocol"
MIL-STD-1778); August 1983; Department of Defense.

"Military Standard Internet Protocol" (MIL-STD-1777);
August. 1983; Department of Defense.

System Development Corporation, "Laboratory Implementation
Plan," TN-WD-8574,000,02, January 1985.

System Development Corporation, "Laboratory Specification,"
t TM-WD-7172,'520,00, August 1984.

System Development Corporation, "Higher Level Capability
Plan," TM-WD-8573/O00/00, April 1984.

Kernighan, B. W., and Ritchie, D. M.; The C Programming
Language; Prentice-Hall, Inc.; Englewood Cliffs, NJ; 1978.

Kernighan, B. W., and Pike, R.; The UNIX Programming
Environment; Prentice-Hall, Inc.; Englewood Cliffs, NJ;
1984.

Leffler, S. J., Fabry, R.S., and Joy, W.N.; "A 4.2 BSD
Interprocess Communication Primer"; Computer Systems
Research Croup, Department of Electrical Engineering and
Computer Science, University of California, Berkeley; 1985.

o.

"a.'

-. '

' p-



* B-I]

APPENDIX B -_Glossary

ACK (Acknowledgment)

In data transfer between devices, data are blocked into

units of a size given in each block's header. if the

received data are found to be without errors, then the

receiving device sends an ACK block back to the transmitting

unit to acknowledge receipt. The transmitting device then

sends the next block. If the receiving unit detects errors,
however, it sends a NAK block to indicate the received data

contained errors.

ASCII (American Standard Code for Information Interchange)

A standard code for the representation of alphanumeric

information. ASCII is an 8-bit code in which 7 bits

indicate the character represented and the 8th, high-order

. .bit is used for parity.

DEC (Digital Equipment Corporation)

IUT (Implementation Under Test)

A protocol implementation that is the subject of the

immediate test.

MIL-STD (Military Standard)

Specification published by the PoD.

NAK (Negative Acknowledgment)

In data transfer between devices, a NAK block is

returned by the receiving device to the sending device to

e indicate the preceding data block contained errors. See

also ACK.

0.%Iz
r.'

O. .J~A~~~ ~ *.% *., ~ *



*~B -2

packet switching

A method of transmitting messages through a network in

which long messages are subdivided into short packets. The

packets are then transmitted as in message switching.

PAD (Packet Assembler Disassembler)

In this document, PAD refers to a module of a

structured program responsible for reading and writing data

packets. Not to be confused with the other known usage,

which describes a device to provide service to asynchronous

terminals within an X.25 network.

PAR (Positive Acknowledgment and Response)

A simple communication protocol stating that every

packet received must be either ACKed or NAKed.

protocol

A set of rules governing the operation of functional

units to achieve communication.

TCP (Transmission Control Protocol)

The DoD standard connection-oriented transport protocol

used to provide reliable, sequenced, end-to-end service.

ULP (Upper Level Protocol)

Any protocol above TCP in the layered protocol

hierarchy that uses TCP. This term includes presentation

layer protocols, session layer protocols, and user

applications such as the Protocol Test System's drivers.



* c-I

APPENDIX C - Examples of Remote Driver implementation in

V', UN I X/C

C.1 CONNECTION ESTABLISHMENT

The Protocol Test System runs in a UNIX 4.2 BSD

environment. The example Remote Driver is implemented in C

language, which provides access to several interprocess

communication system calls <e.g., the fork, socket, bind,

listen, and accept system calls).

5-.. The design of the Remote D)river uses the Internet

* server model. The first step taken by the Remote Driver is

to disassociate itself from the controlling terminal of the

-. invoker. It then does a passive open and listens at the

- published well-known port for a connection request from the

Surrogate Driver. Using the fork system call, the Remote

Driver creates a copy of itself (a child process), so

that it can continue to listen for connection requests

following a successful connection. It is this child process

that carries out the functions of the Remote Driver,

communicating over the established command channel. The

original or parent process remains in execution and listens

to the well-known port. Figure C.l-1 outlines the

establishment of the command channel in 4.2 BSD UNIX/'C. In

'. addition to utilizing the system calls, the example uses the

4.2 BSD library calls to eliminate direct handling of

Internet protocol numbers and addressing.

'.4.%

"'O

M -

Wk"-ORA.

M4



Figure C.1-1. Outline of Command Channel Establishment
in 4.2 BSP UNIX C

COMMAND CEHANNII. ESTABL[SEMENT

struct protoenet *pp;

struct servent *sp;

pp = getprotobyname("tcp"); 4.2 BSD library call *,

sp = getservbvname("remotedriver","tcp"); 4.2 BSD library

call *

zifndef DEBUG
-<,disassociate remote driver from controlling
terminal .endif

sin.sin port = sp- 'Sport;

s = socket(AF INET, SOCK STREAM, pp-p_proto);

bind(s, (caddr _t)&sin, sizeof(sin), 0);

listen~s, 5; passive open to listen at well-known
port *'

for(;;)
s2 = accepts, 0, 0);

if (forko) == 0 { * this is the child */{
close(s);
do remote driver functions(s2); * s2 is the

local connection name of the command channel *

close(s2); /* the parent goes back to listening
on s /

V. %

F/



* C-3

-'

C.2 A PAD FUNCTION

A Packet Assembler/Disassembler (PAD) function is

useful for implementing a Remote Driver. Because the two

basic functions of receiving and transmitting packets are

performed repeatedly, it may be wise to modularize them.

When the Remote Driver reads data from the command channel,

it must be able to interpret the bytes correctly. In a

UNIX/C implementation, the method used to achieve this

result is to load the data into a data structure where

distinct fields can be declared. In C, this is the struct

declaration. Each collection of fields can be declared and

* referenced as a whole. The term "packet" has been used in

this document as the name of this data structure reference.
".. . The struct declaration is shown in Figure C.2-l.

Figure C.2-1. The C Syntax Format of the Data Packet

#define MAX TEXT LEN 4096
struct remote pack

char cntl flag;
char err_flag;
int code;
int num bytes;f. int reserved;

char text[MAXTEXTLEN];

The reception mode -F the PA.T fuinction roads data and

"packets" the data. The PAP accomplishes this task by

* reading the first 14 bytes of data from the input stream.

This first 14 bytes is effectively the header of the data

packet. The header contains all the information needed to



C-4

process the packet, including the integer in the "num_bytes"

field that indicates the number of bytes of character text

to follow, if any. If the input data stream is correctly

packeted into a data structure, then interpretation of the

fields in the packet should become clearer and less

susceptible to error.

The transmission mode of the PAD function unpackets the

data and sends data over the communication channel. The PAD

accomplishes this task Ly writing a packet header and then

the text into a memory space allocated for a large character

string. The size is equal to 4096 bytes--the maximum text

* size--plus 14 bytes for the header information. If the text

size is less than the maximum, then only that much need be
written. The Remote Driver then transmits the data as a

normal byte stream.

An example of a PAD implemented in C is given in

Figure C.2-2:

o The example is specific to UNIX/C on a VAX having
32-bit integers;

o The routines for converting between (VAX) word order
are mandatory.

S<



* C-5

Figure C.2-2. A Packet Assrmbler/nisassembler in C

#define HEADERSIZE 14
#define MAXTEXT LEN 4096
#define MAXPACKLEN HEADERSIZE+MAXTEXTLEN

send packet(packet,sock) >~packet disassembler
struct remote pack *packet;
int sock;

{ register int i;
char send buffer[MAXPACKLENI;

send buffer[0J = packet-cntl_ flag; hs-ewr
send -buffer~l] = packet-",err_flag; *hs-ewr

conversion
**((int *)(send buffer+2)) = htonl(packet->code);

*(H(nt *) (send buffer+6) ) =htonl(packet->
*(in _=num -bytes);

*it*)(send-buffer,+l0)) htonl(packet->reserved);
for(i=0; i K packet->num bytes; i++)

* send-bufferli+l41 = packet->textli];
/* send the packet

return(write(sock, send buffer,
packet->numbytes+HEADERSIZE));

recvpacket(packet,sock) /* packet assembler
struct remote pack *packet;
int sock;

char recv -buffer[HEADERSIZE);
int result;

//* read the header *

if (rsl = read(sock, recv -buffer, HEADERSIZE))
(resultHEADERSIZE)

return (result);

* packet->cntl flag = recv buffer[01;
packet->err flag = recv-bufferill; ,/* net-host

conversion *
packet->code = ntoh] (* ( (it *)recv buffer+2)))
packet->num bytes = ntohl(*((int *)(recv buffer+6)));
packet->reserved = ntohl(*((int *)(recv-buffer+10)));

'~read the text
if (packet-2,num bytes)

I' if(read(sock, packet-.text, packet-,num_bytes)
0~ packet->,num_bytes)

return(0);

V

-VA~ t <t''v I
2 ml J.,



A

A D-1I

APPENDIX D - Example Command Channel Packet Exchange Between the
Central Driver (CD) and the Remote Driver (RD)

PACKET FIELDS EXPLANATION

CD to RD CTRLFLACS: 00010 100 Protocol Command,
Channel is 2

5%

.5 PRIMCODE: 3 Command is PSVOPEN

TEXT: 2010 3 0 0 0 0 0 Arguments: Source Port
is 2010, Precedence is
3, other arguments have
default values.

RD to CD CTRLFLAGS: 00000 001 ACK previous packet.

RD to CD CTRLFLAGS: 00010 010 Data Packet (Protocol
*Response), Channel 2

TEXT: OPEN ID 5 2010 END Open Id response, the
destination port and
address are not known,
so two blanks appear.
LCN is 5, Source Port
is 2010.

4 PEER EXCHANGE BETWEEN TCP IUT AND TCP REFERENCE
IMPLEMENTATION LEADS TO ESTABLISHMENT OF CONNECTION.

RD to CD CTRLFLAGS: 00010 010 Data Packet (Protocol
Response), Channel 2

TEXT: OPEN SUCCESS 5 END Open Success response,
LCN 5.

CD to RD CTRLFLAGS: 00010 000 Driver Command,
Channel 2

PRIMCODE: I Command is GENSNDTEXT

TEXT: F 8 Arguments: TEXT CHR is
"F", TEXT LEN is-8.

RD to CD CTRLFLAGS: 00000 001 ACE previous packet.

CD to RD CTRLFLAGS: 00010 100 Protocol Command,
Channel 2

PRIMCODE: 5 Command is Send



D-2

TEXT: 5 1 0 0 0 Arguments: LCN 5, Push
is on, Urgent is off,
no ULP Timeout.

RD to CD CTRLFLAGS: 00000 001 ACK previous packet.

NOTE. There is no Driver Response to the Send
Protocol Command. After acknowledgment, the
previously generated data is sent over the indicated
connection.

CD to RD CTRLFLAGS: 00010 100 Protocol Command,
Channel 2

PRIMCODE: 7 Command is Close

TEXT: 5 Argument: LCN 5.

NOTE: There is no Driver Response to the Close
Protocol Command until the TCP IUT informs the RD of
the completion of the TCP closing handshake. Some
time passes.

PEER EXCHANGE BETWEEN TCP IUT AND TCP REFERENCE IMPLEMENTATION:
TCP IUT CAN COMPLETE USER'S CLOSE, WHEN PEER HAS CLOSED.

RD to CD CTRLFLAGS: 00010 010 Data Packet (Protocol

Response), Channel 2

TEXT: TERMINATE 5 CONNECTION CLOSED END

Terminate response,

LCN 5, indicating
completion of the TCP
closing handshake.

NOTE: The association between Channel 2 and LCN 5
ends now because the connection ceases to exist. The
next four packets show the exchange in a test of the
TCP IUT's handling of an erroneous command to send
data on a non-existent connection.

CD to RD CTRLFLAGS: 00010 000 Driver Command,
Channel 2

PRIMCODE: 1 Command is GENSNDTEXT

TEXT: F 8 Arguments: TEXTCHR is
"F", TEXTLEN is 8.

0s



ED-3

RD to CD CTRLFLAGS: 00000 001 ACK previous packet.

CD to RD CTRLFLAGS: 00010 100 Protocol Command,
Channel 2

PRIMCODE: 5 Command is Send

TEXT: 5 1 0 0 0 Arguments: LCN 5, Push
is on, Urgent is off,
no ULP Timeout.

RD to CD CTRLFLAGS: 00000 001 ACK previous packet.

NOTE: The Driver ACKs the Send command packet even

though the command is in error.

RD to CD CTRLFLAGS: 00010 010 Data Packet (Protocol
Response), Channel is 2

* because Command packet
evoking this response

4, has Channel Number of
2 and not because of
the LCN argument of the

erroneous command.

TEXT: TCP ERROR : CONNECTION DOES NOT EXIST END4END

TCP Error response.
There is no LCN, so one
blank is substituted.

5-




